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This article describes the robot Stanley, which won the 2005 DARPA Grand Challenge.
Stanley was developed for high-speed desert driving without manual intervention. The
robot’s software system relied predominately on state-of-the-art artificial intelligence
technologies, such as machine learning and probabilistic reasoning. This paper describes
the major components of this architecture, and discusses the results of the Grand Chal-
lenge race. © 2006 Wiley Periodicals, Inc.

1. INTRODUCTION

The Grand Challenge was launched by the Defense
Advanced Research Projects Agency �DARPA� in
2003 to spur innovation in unmanned ground vehicle
navigation. The goal of the Challenge was to develop
an autonomous robot capable of traversing unre-
hearsed off-road terrain. The first competition, which
carried a prize of $1M, took place on March 13, 2004.
It required robots to navigate a 142-mile long course
through the Mojave desert in no more than 10 h. 107
teams registered and 15 raced, yet none of the par-
ticipating robots navigated more than 5% of the entire
course. The challenge was repeated on October 8,
2005, with an increased prize of $2M. This time, 195
teams registered and 23 raced. Of those, five teams
finished. Stanford’s robot “Stanley” finished the
course ahead of all other vehicles in 6 h, 53 min, and
58 s, and was declared the winner of the DARPA
Grand Challenge; see Figure 1.

This paper describes the robot Stanley, and its
software system in particular. Stanley was developed
by a team of researchers to advance the state-of-the-
art in autonomous driving. Stanley’s success is the re-

sult of an intense development effort led by Stanford
University, and involving experts from Volkswagen
of America, Mohr Davidow Ventures, Intel Research,
and a number of other entities. Stanley is based on a
2004 Volkswagen Touareg R5 TDI, outfitted with a six
processor computing platform provided by Intel, and
a suite of sensors and actuators for autonomous driv-
ing. Figure 2 shows images of Stanley during the race.

The main technological challenge in the develop-
ment of Stanley was to build a highly reliable system,
capable of driving at relatively high speeds through
diverse and unstructured off-road environments, and
to do all this with high precision. These requirements
led to a number of advances in the field of autono-
mous navigation, as surveyed in this paper. Methods
were developed, and existing methods extended, in
the areas of long-range terrain perception, real-time
collision avoidance, and stable vehicle control on slip-
pery and rugged terrain. Many of these develop-
ments were driven by the speed requirement, which
rendered many classical techniques in the off-road
driving field unsuitable. In pursuing these develop-
ments, the research team brought to bear algorithms

Figure 1. �a� At approximately 1:40 pm on Oct 8, 2005, Stanley was the first robot to complete the DARPA Grand
Challenge. �b� The robot is being honored by DARPA Director Dr. Tony Tether.
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from diverse areas including distributed systems,
machine learning, and probabilistic robotics.

1.1. Race Rules

The rules �DARPA, 2004� of the DARPA Grand Chal-
lenge were simple. Contestants were required to
build autonomous ground vehicles capable of tra-
versing a desert course up to 175-miles long in less
than 10 h. The first robot to complete the course in
under 10 h would win the challenge and the $2M
prize. Absolutely no manual intervention was al-
lowed. The robots were started by DARPA personnel
and from that point on had to drive themselves.
Teams only saw their robots at the starting line and,
with luck, at the finish line.

Both the 2004 and 2005 races were held in the
Mojave desert in the southwest United States. The
course terrain varied from high-quality graded dirt
roads to winding rocky mountain passes; see Figure
2. A small fraction of each course traveled along
paved roads. The 2004 course started in Barstow,

CA, approximately 100 miles northeast of Los Ange-
les, and finished in Primm, NV, approximately
30 miles southwest of Las Vegas. The 2005 course
both started and finished in Primm, NV.

The specific race course was kept secret from all
teams until 2 h before the race. At this time, each
team was given a description of the course on CD-
ROM in a DARPA-defined route definition data for-
mat �RDDF�. The RDDF is a list of longitudes, lati-
tudes, and corridor widths that define the course
boundary, and a list of associated speed limits; an
example segment is shown in Figure 3. Robots that
travel substantially beyond the course boundary risk
disqualification. In the 2005 race, the RDDF con-
tained 2,935 waypoints.

The width of the race corridor generally tracked
the width of the road, varying between 3 and 30 m
in the 2005 race. Speed limits were used to protect
important infrastructure and ecology along the
course, and to maintain the safety of DARPA chase
drivers who followed behind each robot. The speed
limits varied between 5 and 50 mph. The RDDF de-
fined the approximate route that robots would take,

Figure 2. Images from the race.

Figure 3. A section of the RDDF file from the 2005
DARPA Grand Challenge. The corridor varies in width
and maximum speed. Waypoints are more frequent in
turns.
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so no global path planning was required. As a result,
the race was primarily a test of high-speed road
finding, obstacle detection, and avoidance in desert
terrain.

The robots all competed on the same course;
starting one after another at 5 min intervals. When a
faster robot overtook a slower one, the slower robot
was paused by DARPA officials, allowing the second
robot to pass the first as if it were a static obstacle.
This eliminated the need for robots to handle the
case of dynamic passing.

1.2. Team Composition

The Stanford Racing Team team was organized into
four major groups. The Vehicle Group oversaw all
modifications and component developments related
to the core vehicle. This included the drive-by-wire
systems, the sensor and computer mounts, and the
computer systems. The group was led by researchers
from Volkswagen of America’s Electronics Research
Lab. The Software Group developed all software, in-
cluding the navigation software and the various
health monitor and safety systems. The software
group was led by researchers affiliated with Stan-
ford University. The Testing Group was responsible
for testing all system components and the system as
a whole, according to a specified testing schedule.
The members of this group were separate from any
of the other groups. The testing group was led by
researchers affiliated with Stanford University. The
Communications Group managed all media relations
and fund raising activities of the Stanford Racing
Team. The communications group was led by em-
ployees of Mohr Davidow Ventures, with participa-
tion from all other sponsors. The operations over-
sight was provided by a steering board that included
all major supporters.

2. VEHICLE

Stanley is based on a diesel-powered Volkswagen
Touareg R5. The Touareg has four-wheel drive
�4WD�, variable-height air suspension, and automatic
electronic locking differentials. To protect the vehicle
from environmental impact, Stanley has been outfit-
ted with skid plates and a reinforced front bumper. A
custom interface enables direct electronic actuation of
both the throttle and brakes. A DC motor attached to
the steering column provides electronic steering con-
trol. A linear actuator attached to the gear shifter
shifts the vehicle between drive, reverse, and parking
gears �Figure 4�c��. Vehicle data, such as individual
wheel speeds and steering angle, are sensed auto-
matically and communicated to the computer system
through a CAN bus interface.

The vehicle’s custom-made roof rack is shown in
Figure 4�a�. It holds nearly all of Stanley’s sensors.
The roof provides the highest vantage point of the ve-
hicle; from this point, the visibility of the terrain is
best, and the access to global positioning system
�GPS� signals is least obstructed. For environment
perception, the roof rack houses five SICK laser range
finders. The lasers are pointed forward along the
driving direction of the vehicle, but with slightly dif-
ferent tilt angles. The lasers measure cross sections of
the approaching terrain at different ranges out to
25 m in front of the vehicle. The roof rack also holds
a color camera for long-range road perception, which
is pointed forward and angled slightly downward.
For long-range detection of large obstacles, Stanley’s
roof rack also holds two 24 GHz RADAR sensors,
supplied by Smart Microwave Sensors. Both RADAR
sensors cover the frontal area up to 200 m, with a cov-
erage angle in azimuth of about 20°. Two antennae of
this system are mounted on both sides of the laser
sensor array. The lasers, camera, and radar system

Figure 4. �a� View of the vehicle’s roof rack with sensors. �b� The computing system in the trunk of the vehicle. �c� The
gear shifter, control screen, and manual override buttons.
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comprise the environment sensor group of the system.
That is, they inform Stanley of the terrain ahead, so
that Stanley can decide where to drive, and at what
speed.

Further back, the roof rack holds a number of ad-
ditional antennae: One for Stanley’s GPS positioning
system and two for the GPS compass. The GPS po-
sitioning unit is a L1/L2/Omnistar HP receiver. To-
gether with a trunk-mounted inertial measurement
unit �IMU�, the GPS systems are the positioning sensor
group, whose primary function is to estimate the lo-
cation and velocity of the vehicle relative to an exter-
nal coordinate system.

Finally, a radio antenna and three additional GPS
antennae from the DARPA E-Stop system are also lo-
cated on the roof. The E-Stop system is a wireless link
that allows a chase vehicle following Stanley to safely
stop the vehicle in case of emergency. The roof rack
also holds a signaling horn, a warning light, and two
manual E-stop buttons.

Stanley’s computing system is located in the ve-
hicle’s trunk, as shown in Figure 4�b�. Special air
ducts direct air flow from the vehicle’s air condition-
ing system into the trunk for cooling. The trunk fea-
tures a shock-mounted rack that carries an array of
six Pentium M computers, a Gigabit Ethernet switch,
and various devices that interface to the physical sen-
sors and the Touareg’s actuators. It also features a
custom-made power system with backup batteries,
and a switch box that enables Stanley to power-cycle
individual system components through software.
The DARPA-provided E-Stop is located on this rack
on additional shock compensation. The trunk assem-
bly also holds the custom interface to the Volkswagen
Touareg’s actuators: The brake, throttle, gear shifter,
and steering controller. A six degree-of-freedom IMU
is rigidly attached to the vehicle frame underneath
the computing rack in the trunk.

The total power requirement of the added instru-
mentation is approximately 500 W, which is pro-
vided through the Touareg’s stock alternator. Stan-
ley’s backup battery system supplies an additional
buffer to accommodate long idling periods in desert
heat.

The operating system run on all computers is
Linux. Linux was chosen due to its excellent network-
ing and time sharing capabilities. During the race,
Stanley executed the race software on three of the six
computers; a fourth was used to log the race data
�and two computers were idle�. One of the three race
computers was entirely dedicated to video process-

ing, whereas the other two executed all other soft-
ware. The computers were able to poll the sensors at
up to 100 Hz, and to control the steering, throttle and
brake at frequencies up to 20 Hz.

An important aspect in Stanley’s design was to
retain street legality, so that a human driver could
safely operate the robot as a conventional passenger
car. Stanley’s custom user interface enables a driver to
engage and disengage the computer system at will,
even while the vehicle is in motion. As a result, the
driver can disable computer control at any time of the
development, and regain manual control of the ve-
hicle. To this end, Stanley is equipped with several
manual override buttons located near the driver seat.
Each of these switches controls one of the three major
actuators �brakes, throttle, and steering�. An addi-
tional central emergency switch disengages all com-
puter control and transforms the robot into a conven-
tional vehicle. While this feature was of no relevance
to the actual race �in which no person sat in the car�,
it proved greatly beneficial during software develop-
ment. The interface made it possible to operate Stan-
ley autonomously with people inside, as a dedicated
safety driver could always catch computer glitches
and assume full manual control at any time.

During the actual race, there was of course no
driver in the vehicle, and all driving decisions were
made by Stanley’s computers. Stanley possessed an
operational control interface realized through a
touch-sensitive screen on the driver’s console. This
interface allowed Government personnel to shut
down and restart the vehicle, if it became necessary.

3. SOFTWARE ARCHITECTURE

3.1. Design Principles

Before both the 2004 and 2005 Grand Challenges,
DARPA revealed to the competitors that a stock
4WD pickup truck would be physically capable of
traversing the entire course. These announcements
suggested that the innovations necessary to success-
fully complete the challenge would be in designing
intelligent driving software, not in designing exotic
vehicles. This announcement and the performance of
the top finishers in the 2004 race guided the design
philosophy of the Stanford Racing Team: Treat au-
tonomous navigation as a software problem.
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In relation to previous work on robotics architec-
tures, Stanley’s software architecture is related to the
well-known three-layer architecture �Gat, 1998�, albeit
without a long-term symbolic planning method. A
number of guiding principles proved essential in the
design of the software architecture:

3.1.1. Control and Data Pipeline

There is no centralized master process in Stanley’s
software system. All modules are executed at their
own pace, without interprocess synchronization
mechanisms. Instead, all data are globally time
stamped, and time stamps are used when integrat-
ing multiple data sources. The approach reduces the
risk of deadlocks and undesired processing delays.
To maximize the configurability of the system,
nearly all interprocess communication is imple-
mented through publish-subscribe mechanisms. The
information from sensors to actuators flows in a
single direction; no information is received more
than once by the same module. At any point in time,
all modules in the pipeline are working simulta-
neously, thereby maximizing the information
throughput and minimizing the latency of the soft-
ware system.

3.1.2. State Management

Even though the software is distributed, the state of
the system is maintained by local authorities. There
are a number of state variables in the system. The
health state is locally managed in the health monitor;
the parameter state in the parameter server; the glo-
bal driving mode is maintained in a finite state au-
tomaton; and the vehicle state is estimated in the
state estimator module. The environment state is
broken down into multiple maps �laser, vision, and
radar�. Each of these maps are maintained in dedi-
cated modules. As a result, all other modules will
receive values that are mutually consistent. The ex-
act state variables are discussed in later sections of
this paper. All state variables are broadcast to rel-
evant modules of the software system through a
publish-subscribe mechanism.

3.1.3. Reliability

The software places strong emphasis on the overall
reliability of the robotic system. Special modules
monitor the health of individual software and hard-

ware components, and automatically restart or
power-cycle such components when a failure is ob-
served. In this way, the software is robust to certain
occurrences, such as crashing or hanging of a soft-
ware modules or stalled sensors.

3.1.4. Development Support

Finally, the software is structured so as to aid devel-
opment and debugging of the system. The developer
can easily run just a subsystem of the software, and
effortlessly migrate modules across different proces-
sors. To facilitate debugging during the develop-
ment process, all data are logged. By using a special
replay module, the software can be run on recorded
data. A number of visualization tools were devel-
oped that make it possible to inspect data and inter-
nal variables while the vehicle is in motion, or while
replaying previously logged data. The development
process used a version control process with a strict
set of rules for the release of race-quality software.
Overall, we found that the flexibility of the software
during development was essential in achieving the
high level of reliability necessary for long-term au-
tonomous operation.

3.2. Processing Pipeline

The race software consisted of approximately 30
modules executed in parallel �Figure 5�. The system
is broken down into six layers which correspond to
the following functions: Sensor interface, perception,
control, vehicle interface, user interface, and global
services.

1. The sensor interface layer comprises a num-
ber of software modules concerned with re-
ceiving and time stamping all sensor data.
The layer receives data from each laser sensor
at 75 Hz, from the camera at approximately
12 Hz, the GPS and GPS compass at 10 Hz,
and the IMU and the Touareg CAN bus at
100 Hz. This layer also contains a database
server with the course coordinates �RDDF
file�.

2. The perception layer maps sensor data into
internal models. The primary module in this
layer is the unscented Kalman filter �UKF�
vehicle state estimator, which determines the
vehicle’s coordinates, orientation, and veloci-
ties. Three different mapping modules build
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two-dimensional �2D� environment maps
based on lasers, the camera, and the radar
system. A road finding module uses the laser-
derived maps to find the boundary of a road,
so that the vehicle can center itself laterally.
Finally, a surface assessment module extracts
parameters of the current road for the pur-
pose of determining safe vehicle speeds.

3. The control layer is responsible for regulat-
ing the steering, throttle, and brake response
of the vehicle. A key module is the path plan-
ner, which sets the trajectory of the vehicle in
steering and velocity space. This trajectory is
passed to two closed-loop trajectory tracking

controllers, one for the steering control and
one for brake and throttle control. Both con-
trollers send low-level commands to the ac-
tuators that faithfully execute the trajectory
emitted by the planner. The control layer also
features a top level control module, imple-
mented as a simple finite state automaton.
This level determines the general vehicle
mode in response to user commands received
through the in-vehicle touch screen or the
wireless E-stop, and maintains gear state in
case backward motion is required.

4. The vehicle interface layer serves as the in-
terface to the robot’s drive-by-wire system. It

Figure 5. Flowchart of Stanley software system. The software is roughly divided into six main functional groups: Sensor
interface, perception, control, vehicle interface, and user interface. There are a number of cross-cutting services, such as
the process controller and the logging modules.
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contains all interfaces to the vehicle’s brakes,
throttle, and steering wheel. It also features
the interface to the vehicle’s server, a circuit
that regulates the physical power to many of
the system components.

5. The user interface layer comprises the re-
mote E-stop and a touch-screen module for
starting up the software.

6. The global services layer provides a number
of basic services for all software modules.
Naming and communication services are
provides through Carnegie Mellon Universi-
ty’s �CMU’s� interprocess communication
toolkit �Simmons & Apfelbaum, 1998�. A cen-
tralized parameter server maintains a data-
base of all vehicle parameters and updates
them in a consistent manner. The physical
power of individual system components is
regulated by the power server. Another mod-
ule monitors the health of all systems com-
ponents and restarts individual system com-
ponents when necessary. Clock synchron-
ization is achieved through a time server. Fi-
nally, a data logging server dumps sensor,
control, and diagnostic data to disk for replay
and analysis.

The following sections will describe Stanley’s core
software processes in greater detail. The paper will
then conclude with a description of Stanley’s perfor-
mance in the Grand Challenge.

4. VEHICLE STATE ESTIMATION

Estimating vehicle state is a key prerequisite for pre-
cision driving. Inaccurate pose estimation can cause
the vehicle to drive outside the corridor, or build ter-
rain maps that do not reflect the state of the robot’s
environment, leading to poor driving decisions. In
Stanley, the vehicle state comprises a total of 15 vari-
ables. The design of this parameter space follows
standard methodology �Farrell & Barth, 1999; van der
Merwe & Wan, 2004�, as indicated in Table I.

An unscented Kalman filter �UKF� �Julier & Uhl-
mann, 1997� estimates these quantities at an update
rate of 100 Hz. The UKF incorporates observations
from the GPS, the GPS compass, the IMU, and the
wheel encoders. The GPS system provides both ab-
solute position and velocity measurements, which are
both incorporated into the UKF. From a mathematical

point of view, the sigma point linearization in the
UKF often yields a lower estimation error than the
linearization based on Taylor expansion in the ex-
tended Kalman filter �EKF� �van der Merwe, 2004�. To
many, the UKF is also preferable from an implemen-
tation standpoint because it does not require the ex-
plicit calculation of any Jacobians; although those can
be useful for further analysis.

While GPS is available, the UKF uses only a
“weak” model. This model corresponds to a moving
mass that can move in any direction. Hence, in nor-
mal operating mode, the UKF places no constraint on
the direction of the velocity vector relative to the ve-
hicle’s orientation. Such a model is clearly inaccurate,
but the vehicle-ground interactions in slippery desert
terrain are generally difficult to model. The moving
mass model allows for any slipping or skidding that
may occur during off-road driving.

However, this model performs poorly during
GPS outages, as the position of the vehicle relies
strongly on the accuracy of the IMU’s accelerometers.
As a consequence, a more restrictive UKF motion
model is used during GPS outages. This model con-
strains the vehicle to only move in the direction it is
pointed. The integration of the IMU’s gyroscopes for
orientation, coupled with wheel velocities for com-
puting the position, is able to maintain accurate pose
of the vehicle during GPS outages of up to 2 min
long; the accrued error is usually in the order of cen-
timeters. Stanley’s health monitor will decrease the
maximum vehicle velocity during GPS outages to
10 mph in order to maximize the accuracy of the re-
stricted vehicle model. Figure 6�a� shows the result of
position estimation during a GPS outage with the
weak vehicle model; Figure 6�b�, the result with the
strong vehicle model. This experiment illustrates the
performance of this filter during a GPS outage.
Clearly, accurate vehicle modeling during GPS out-

Table I. Standard methodology of Stanley’s 15 variables.

No. of values State variable

3 Position �longitude, latitude, and altitude�
3 Velocity

3 Orientation �Euler angles: roll, pitch,
and yaw�

3 Accelerometer biases

3 Gyro biases
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ages is essential. In an experiment on a paved road,
we found that even after 1.3 km of travel without
GPS on a cyclic course, the accumulated vehicle error
was only 1.7 m.

5. LASER TERRAIN MAPPING

5.1. Terrain Labeling

To safely avoid obstacles, Stanley must be capable of
accurately detecting nondrivable terrain at a suffi-
cient range to stop or take the appropriate evasive
action. The faster the vehicle is moving, the farther
away obstacles must be detected. Lasers are used as
the basis for Stanley’s short and medium range ob-

stacle avoidance. Stanley is equipped with five
single-scan laser range finders mounted on the roof,
tilted downward to scan the road ahead. Figure 7�a�
illustrates the scanning process. Each laser scan gen-
erates a vector of 181 range measurements spaced
0.5° apart. Projecting these scans into the global co-
ordinate frame according, to the estimated pose of
the vehicle, results in a 3D point cloud for each laser.
Figure 7�b� shows an example of the point clouds
acquired by the different sensors. The coordinates of
such 3D points are denoted �Xk

i Yk
i Zk

i �; where k is the
time index at which the point was acquired, and i is
the index of the laser beam.

Obstacle detection on laser point clouds can be
formulated as a classification problem, assigning to
each 2D location in a surface grid one of three pos-
sible values: Occupied, free, and unknown. A loca-
tion is occupied by an obstacle if we can find two
nearby points whose vertical distance �Zk

i −Zm
j � ex-

ceeds a critical vertical distance �. It is considered
drivable �free of obstacles� if no such points can be
found, but at least one of the readings falls into the
corresponding grid cell. If no reading falls into the
cell, the drivability of this cell is considered un-
known. The search for nearby points is conveniently
organized in a 2D grid, the same grid used as the
final drivability map that is provided to the vehicle’s
navigation engine. Figure 8 shows the example grid
map. As indicated in this figure, the map assigns
terrain to one of three classes: Drivable, occupied, or
unknown.

Unfortunately, applying this classification

Figure 6. UKF state estimation when GPS becomes un-
available. The area covered by the robot is approximately
100�100 m. The large ellipses illlustrate the position un-
certainty after losing GPS. �a� Without integrating the
wheel motion the result is highly erroneous. �b� The wheel
motion clearly improves the result.

Figure 7. �a� Illustration of a laser sensor: The sensor is angled downward to scan the terrain in front of the vehicle as it
moves. Stanley possesses five such sensors, mounted at five different angles. �b� Each laser acquires a three-dimensional
�3D� point cloud over time. The point cloud is analyzed for drivable terrain and potential obstacles.
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scheme directly to the laser data yields results inap-
propriate for reliable robot navigation. Figure 9
shows such an instance, in which a small error in the
vehicle’s roll/pitch estimation leads to a massive ter-
rain classification error, forcing the vehicle off the
road. Small pose errors are magnified into large er-
rors in the projected positions of laser points because
the lasers are aimed at the road up to 30 m in front
of the vehicle. In our reference dataset of labeled ter-

rain, we found that 12.6% of known drivable area is
classified as obstacle, for a height threshold param-
eter �=15 cm. Such situations occur even for roll/
pitch errors smaller than 0.5°. Pose errors of this
magnitude can be avoided by pose estimation sys-
tems that cost hundreds of thousands of dollars, but
such a choice was too costly for this project.

The key insight to solving this problem is illus-
trated in Figure 10. This graph plots the perceived

Figure 8. Examples of occupancy maps: �a� An underpass and �b� a road.

Figure 9. Small errors in pose estimation �smaller than 0.5°� induce massive terrain classification errors, which if ignored
could force the robot off the road. These images show two consecutive snapshots of a map that forces Stanley off the road.
Here, obstacles are plotted in red, free space in white, and unknown territory in gray. The blue lines mark the corridor as
defined by the RDDF.
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obstacle height �Zk
i −Zm

j � along the vertical axis for a
collection of grid cells taken from flat terrain.
Clearly, for some grid cells, the perceived height is
enormous—despite the fact that in reality, the sur-
face is flat. However, this function is not random.
The horizontal axis depicts the time difference �t�k
−m� between the acquisition of those scans. Obvi-
ously, the error is strongly correlated with the
elapsed time between the two scans.

To model this error, Stanley uses a first-order
Markov model, which models the drift of the pose
estimation error over time. The test for the presence
of an obstacle is therefore a probabilistic test. Given
two points �Xk

i Yk
i Zk

i �T and �Xm
j Ym

j Zm
j �T, the height

difference is distributed according to a normal dis-
tribution whose variance scales linearly with the
time difference �k−m�. Thus, Stanley uses a probabi-
listic test for the presence of an obstacle, of the type

p��Zk
i − Zm

j � � �� � � , �1�

where � is a confidence threshold, e.g., �=0.05.
When applied over a 2D grid, the probabilistic

method can be implemented efficiently so that only
two measurements have to be stored per grid cell.
This is due to the fact that each measurement defines
a bound on future Z values for obstacle detection.
For example, suppose we observe a measurement

for a cell which was previously observed. Then, one
or more of three cases will be true:

1. The measurement might be a witness of an
obstacle, according to the probabilistic test. In
this case, Stanley simply marks the cell as an
obstacle and no further testing takes place.

2. The measurement does not trigger as a wit-
ness of an obstacle; but, in future tests, it es-
tablishes a tighter lower bound on the mini-
mum Z value than the previously stored
measurement. In this case, our algorithm
simply replaces the previous measurement
with this one. The rationale behind this is
simple: If the measurement is more restrictive
than the previous one, there will not be a situ-
ation where a test against this point would
fail, while a test against the older one would
succeed. Hence, the old point can safely be
discarded.

3. The third case is equivalent to the second, but
with a refinement of the upper value. A mea-
surement may simultaneously refine the
lower and the upper bounds.

The fact that only two measurements per grid cell
have to be stored renders this algorithm highly effi-
cient in space and time.

5.2. Data-Driven Parameter Tuning

A final step in developing this mapping algorithm
addresses parameter tuning. Our approach and the
underlying probabilistic Markov model possess a
number of unknown parameters. These parameters
include the height threshold �, the statistical accep-
tance probability threshold �, and various Markov
chain error parameters �the noise covariances of the
process noise and the measurement noise�.

Stanley uses a discriminative learning algorithm
for locally optimizing these parameters. This algo-
rithm tunes the parameters in a way that maximizes
the discriminative accuracy of the resulting terrain
analysis on labeled training data.

The data are labeled through human driving,
similar in spirit to Pomerleau �1993�. Figure 11 illus-
trates the idea: A human driver is instructed to only
drive over obstacle-free terrain. Grid cells traversed
by the vehicle are then labeled as drivable: This area
corresponds to the blue stripe in Figure 11. A stripe
to the left and right of this corridor is assumed to be

Figure 10. Correlation of time and vertical measurement
error in the laser data analysis.
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all obstacles, as indicated by the red stripes in Figure
11. The distance between the drivable and obstacle is
set by hand, based on the average road width for a
segment of data. Clearly, not all of those cells labeled
as obstacles are actually occupied by obstacles; how-
ever, even training against an approximate labeling
is enough to improve the overall performance of the
mapper.

The learning algorithm is now implemented
through coordinate ascent. In the outer loop, the al-
gorithm performs coordinate ascent relative to a
data-driven scoring function. Given an initial guess,
the coordinate ascent algorithm modifies each pa-
rameter one after another by a fixed amount. It then
determines if the new value constitutes an improve-
ment over the previous value when evaluated over a
logged data set, and retains it accordingly. If for a
given interval size no improvement can be found,
the search interval is cut in half and the search is
continued, until the search interval becomes smaller
than a preset minimum search interval �at which
point the tuning is terminated�.

The probabilistic analysis, paired with the dis-
criminative algorithm for parameter tuning, has a
significant effect on the accuracy of the terrain labels.
Using an independent testing data set, we find that
the false positive rate �the area labeled as drivable in
Figure 11� drops from 12.6% to 0.002%. At the same

time, the rate at which the area off the road is labeled
as an obstacle remains approximately constant �from
22.6% to 22.0%�. This rate is not 100%, simply be-
cause most of the terrain there is still flat and driv-
able. Our approach for data acquisition mislabels the
flat terrain as nondrivable. Such mislabeling how-
ever, does not interfere with the parameter tuning
algorithm, and hence is preferable to the tedious
process of labeling pixels manually.

Figure 12 shows an example of the mapper in
action. A snapshot of the vehicle from the side illus-
trates that a part of the surface is scanned multiple
times due to a change of pitch. As a result, the non-
probabilistic method hallucinates a large occupied
area in the center of the road, shown in panel �c� of
Figure 12. Our probabilistic approach overcomes this
error and generates a map that is good enough for
driving. A second example is shown in Figure 13.

6. COMPUTER VISION TERRAIN ANALYSIS

The effective maximum range at which obstacles can
be detected with the laser mapper is approximately
22 m. This range is sufficient for Stanley to reliably
avoid obstacles at speeds up to 25 mph. Based on the
2004 Race Course, the development team estimated
that Stanley would need to reach speeds of 35 mph in
order to successfully complete the challenge. To ex-
tend the sensor range enough to allow safe driving at
35 mph, Stanley uses a color camera to find drivable
surfaces at ranges exceeding that of the laser analysis.
Figure 14 compares laser and vision mapping side by
side. The left diagram shows a laser map acquired
during the race; here, obstacles are detected at an ap-
proximate 22 m range. The vision map for the same
situation is shown on the right side. This map extends
beyond 70 m �each yellow circle corresponds to 10 m
range�.

Our work builds on a long history of research on
road finding �Pomerleau, 1991; Crisman & Thorpe,
1993�; see also Dickmanns �2002�. To find the road, the
vision module classifies images into drivable and
nondrivable regions. This classification task is gener-
ally difficult, as the road appearance is affected by a
number of factors that are not easily measured and
change over time, such as the surface material of the
road, lighting conditions, dust on the lens of the cam-
era, and so on. This suggests that an adaptive ap-
proach is necessary, in which the image interpretation
changes as the vehicle moves and conditions change.

Figure 11. Terrain labeling for parameter tuning: The
area traversed by the vehicle is labeled as “drivable”
�blue� and two stripes at a fixed distance to the left and the
right are labeled as “obstacles” �red�. While these labels
are only approximate, they are extremely easy to obtain
and significantly improve the accuracy of the resulting
map when used for parameter tuning.
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The camera images are not the only source of in-
formation about upcoming terrain available to the vi-
sion mapper. Although we are interested in using vi-
sion to classify the drivability of terrain beyond the
laser range, we already have such drivability infor-
mation from the laser in the near range. All that is re-

quired from the vision routine is to extend the reach
of the laser analysis. This is different from the
general-purpose image interpretation problem, in
which no such data would be available.

Stanley finds drivable surfaces by projecting
drivable area from the laser analysis into the camera

Figure 12. Example of pitching combined with small pose estimation errors: �a� The reading of the center beam of one of
the lasers, integrated over time �some of the terrain is scanned twice.�; �b� shows 3D point cloud; �c� resulting map without
probabilistic analysis, and �d� map with probabilistic analysis. The map shown in �c� possesses a phantom obstacle, large
enough to force the vehicle off the road.

Figure 13. A second example of pitching combined with small page estimation errors.

Thrun et al.: Stanley: The Robot that Won • 673

Journal of Field Robotics DOI 10.1002/rob



image. More specifically, Stanley extracts a quadrilat-
eral ahead of the robot in the laser map, so that all
grid cells within this quadrilateral are drivable. The
range of this quadrilateral is typically between 10 and
20 m ahead of the robot. An example of such a quad-
rilateral is shown in Figure 14�a�. Using straightfor-
ward geometric projection, this quadrilateral is then
mapped into the camera image, as illustrated in Fig-
ures 15�a� and 15�b�. An adaptive computer vision al-
gorithm then uses the image pixels inside this quad-
rilateral as training examples for the concept of
drivable surface.

The learning algorithm maintains a mixture of
Gaussians that model the color of drivable terrain.
Each such mixture is a Gaussian defined in the red/
green/blue �RGB� color space of individual pixels;
the total number of Gaussians is denoted as n. For
each mixture, the learning algorithm maintains a

mean RGB color �i, a covariance �i, and a count mi of
the total number of image pixels that were used to
train this Gaussian.

When a new image is observed, the pixels in the
drivable quadrilateral are mapped into a smaller
number of k “local” Gaussians using the EM algo-
rithm �Duda & Hart, 1973�, with k�n �the covariance
of these local Gaussians are inflated by a small value
so as to avoid overfitting�. These k local Gaussians are
then merged into the memory of the learning algo-
rithm, in a way that allows for slow and fast adap-
tation. The learning adapts to the image in two pos-
sible ways; by adjusting the previously found
internal Gaussian to the actual image pixels, and by
introducing new Gaussians and discarding older
ones. Both adaptation steps are essential. The first en-
ables Stanley to adapt to slowly changing lighting

Figure 14. Comparison of the laser-based �left� and the image-based �right� mapper. For scale, circles are spaced around
the vehicle at a 10 m distance. This diagram illustrates that the reach of lasers is approximately 22 m, whereas the vision
module often looks 70 m ahead.

Figure 15. This figure illustrates the processing stages of the computer vision system: �a� a raw image; �b� the processed
image with the laser quadrilateral and a pixel classification; �c� the pixel classification before thresholding; and �d� horizon
detection for sky removal.
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conditions; the second makes it possible to adapt rap-
idly to a new surface color �e.g., when Stanley moves
from a paved to an unpaved road�.

In detail, to update the memory, consider the jth
local Gaussian. The learning algorithm determines
the closest Gaussian in the global memory, where
closeness is determined through the Mahalanobis
distance

d�i,j� = ��i − �j�T��i + �j�−1��i − �j� . �2�

Let i be the index of the minimizing Gaussian in the
memory. The learning algorithm then chooses one of
two possible outcomes:

1. The distance d�i , j�	
, where 
 is an accep-
tance threshold. The learning algorithm then
assumes that the global Gaussian j is repre-
sentative of the local Gaussian i, and adap-
tation proceeds slowly. The parameters of
this global Gaussian are set to the weighted
mean:

�i ←
mi�i

mi + mj
+

mj�j

mi + mj
, �3�

�i ←
mi�i

mi + mj
+

mj�j

mi + mj
, �4�

mi ← mi + mj, �5�

where mj is the number of pixels in the image
that correspond to the jth Gaussian.

2. The distance d�i , j��
 for any Gaussian i in
the memory. This is the case when none of the
Gaussian in memory are near the local
Gaussian extracted form the image, where
nearness is measured by the Mahalanobis
distance. The algorithm then generates a new
Gaussian in the global memory, with param-
eters �j, �j, and mj. If all n slots are already
taken in the memory, the algorithm “forgets”
the Gaussian with the smallest total pixel
count mi, and replaces it by the new local
Gaussian.

After this step, each counter mi in the memory is dis-
counted by a factor of ��1. This exponential decay

term makes sure that the Gaussians in memory can be
moved in new directions as the appearance of the
drivable surface changes over time.

For finding the drivable surface, the learned
Gaussians are used to analyze the image. The image
analysis uses an initial sky removal step defined in
Ettinger, Nechyba, Ifju & Waszak �2003�. A subse-
quent flood-fill step then removes additional sky pix-
els not found by the algorithm in Ettinger et al. �2003�.
The remaining pixels are than classified using the
learned mixture of Gaussian, in the straightforward
way. Pixels whose RGB value is near one or more of
the learned Gaussians are classified as drivable; all
other pixels are flagged as nondrivable. Finally, only
regions connected to the laser quadrilateral are la-
beled as drivable.

Figure 15 illustrates the key processing steps.
Panel �a� in this figure shows a raw camera image,
and panel �b� shows the image after processing. Pix-
els classified as drivable are colored red, whereas
nondrivable pixels are colored blue. The remaining
two panels in Figure 15 show intermediate process-
ing steps: The classification response before thresh-
olding �panel �c�� and the result of the sky finder
�panel �d��.

Due to the ability to create new Gaussians on the
fly, Stanley’s vision routine can adapt to new terrain
within seconds. Figure 16 shows data acquired at the
National Qualification Event �NQE� of the DARPA
Grand Challenge. Here the vehicle moves from the
pavement to grass, both of which are drivable. The
sequence in Figure 16 illustrates the adaptation at
work: The boxed areas toward the bottom of the im-
age are the training region, and the red coloring in the
image is the result of applying the learned classifier.
As is easily seen in Figure 16, the vision module suc-
cessfully adapts from pavement to grass within less
than 1 s, while still correctly labeling the hay bales
and other obstacles.

Under slowly changing lighting conditions, the
system adapts more slowly to the road surface, mak-
ing extensive use of past images in classification. This
is illustrated in the bottom row of Figure 17, which
shows results for a sequence of images acquired at the
Beer Bottle pass, the most difficult passage in the 2005
Race. Here, most of the terrain has a similar visual ap-
pearance. The vision module, however, still compe-
tently segments the road. Such a result is only pos-
sible because the system balances the use of past
images with its ability to adapt to new camera
images.
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Once a camera image has been classified, it is
mapped into an overhead map, similar to the 2D map
generated by the laser. We already encountered such
a map in Figure 14�b�, which depicted the map of a
straight road. Since certain color changes are natural
even on flat terrain, the vision map is not used for
steering control. Instead, it is used exclusively for ve-
locity control. When no drivable corridor is detected
within a range of 40 m, the robot simply slows down
to 25 mph, at which point the laser range is sufficient

for safe navigation. In other words, the vision analy-
sis serves as an early warning system for obstacles be-
yond the range of the laser sensors.

In developing the vision routines, the research
team investigated a number of different learning al-
gorithms. One of the primary alternatives to the gen-
erative mixture of the Gaussian method was a dis-
criminative method, which uses boosting and
decision stumps for classification �Davies & Lienhart,
2006�. This method relies on examples of nondrivable

Figure 16. These images illustrate the rapid adaptation of Stanley’s computer vision routines. When the laser predomi-
nately screens the paved surface, the grass is not classified as drivable. As Stanley moves into the grass area, the
classification changes. This sequence of images also illustrates why the vision result should not be used for steering
decisions, in that the grass area is clearly drivable, yet Stanley is unable to detect this from a distance.

Figure 17. Processed camera images in flat and mountainous terrain �Beer Bottle Pass�.
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terrain, which were extracted using an algorithm
similar to the one for finding a drivable quadrilateral.
A performance evaluation, carried out using inde-
pendent test data gathered on the 2004 Race Course,
led to inconclusive results. Table II shows the classi-
fication accuracy for both methods; for flat desert
roads and mountain roads. The generative mixture of
Gaussian methods was finally chosen because it does
not require training examples of nondrivable terrain,
which can be difficult to obtain in flat open lakebeds.

7. ROAD PROPERTY ESTIMATION

7.1. Road Boundary

One way to avoid obstacles is to detect them and
drive around them. This is the primary function of
the laser mapper. Another effective method is to
drive in such a way that minimizes the a priori
chances of encountering an obstacle. This is possible
because obstacles are rarely uniformly distributed in
the world. On desert roads, obstacles–such as rocks,
brush, and fence posts–exist most often along the
sides of the road. By simply driving down the
middle of the road, most obstacles on desert roads
can be avoided without ever detecting them!

One of the most beneficial components of Stan-
ley’s navigation routines, thus, is a method for stay-
ing near the center of the road. To find the road cen-
ter, Stanley uses probabilistic low-pass filters to
determine both road sides based using the laser
map. The idea is simple; In expectation, the road
sides are parallel to the RDDF. However, the exact
lateral offset of the road boundary to the RDDF cen-
ter is unknown and varies over time. Stanley’s low-

pass filters are implemented as one-dimensional
Kalman filters �KFs�. The state of each filter is the
lateral distance between the road boundary and the
center of the RDDF. The KFs search for possible ob-
stacles along a discrete search pattern orthogonal to
the RDDF, as shown in Figure 18�a�. The largest free
offset is the “observation” to the KF, in that it estab-
lishes the local measurement of the road boundary.
So, if multiple parallel roads exist in Stanley’s field
of view, separated by a small berm, the filter will
only trace the innermost drivable area.

By virtue of KF integration, the road boundaries
change slowly. As a result, small obstacles—or mo-
mentary situations without side obstacles—affect the
road boundary estimation only minimally; however,
persistent obstacles that occur over an extended pe-
riod of time do have a strong effect.

Based on the output of these filters, Stanley de-
fines the road to be the center of the two boundaries.
The road center’s lateral offset is a component in
scoring trajectories during path planning, as will be
discussed further below. In the absence of other con-
tingencies, Stanley slowly converges to the esti-
mated road center. Empirically, we found that this
driving technique stays clear of the vast majority of
natural obstacles on desert roads. While road center-
ing is clearly only a heuristic, we found it to be
highly effective in extensive desert tests.

Figure 18�b� shows an example result of the road
estimator. The blue corridor shown there is Stanley’s
best estimate of the road. Notice that the corridor is
confined by two small berms, which are both de-
tected by the laser mapper. This module plays an
important role in Stanley’s ability to negotiate desert
roads.

Table II. Road detection rate for the two primary machine learning methods, broken down into different ranges. The
comparison yields no conclusive winner.

Drivable terrain detection rate
�m�

Flat desert roads Mountain roads

Discriminative
training �%�

Generative
training �%�

Discriminative
training �%�

Generative
training �%�

10–20 93.25 90.46 80.43 88.32
20–35 95.90 91.18 76.76 86.65
35–50 94.63 87.97 70.83 80.11
50+ 87.13 69.42 52.68 54.89

False positives, all ranges 3.44 3.70 0.50 2.60
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7.2. Terrain Ruggedness

In addition to avoiding obstacles and staying
centered along the road, another important compo-
nent of safe driving is choosing an appropriate ve-
locity �Iagnemma & Dubowsky, 2004�. Intuitively
speaking, desert terrain varies from flat and smooth
to steep and rugged. The type of the terrain plays an
important role in determining the maximum safe ve-
locity of the vehicle. On steep terrain, driving too
fast may lead to fishtailing or sliding. On rugged
terrain, excessive speeds may lead to extreme shocks
that can damage or destroy the robot. Thus, sensing
the terrain type is essential for the safety of the ve-
hicle. In order to address these two situations, Stan-
ley’s velocity controller constantly estimates terrain
slope and ruggedness and uses these values to set
intelligent maximum speeds.

The terrain slope is taken directly from the vehi-
cle’s pitch estimate, as computed by the UKF. Bor-
rowing from Brooks & Iagnemma �2005�, the terrain
ruggedness is measured using the vehicle’s z accel-
erometer. The vertical acceleration is band-pass fil-
tered to remove the effect of gravity and vehicle vi-
bration, while leaving the oscillations in the range of
the vehicle’s resonant frequency. The amplitude of
the resulting signal is a measurement of the vertical

shock experienced by the vehicle due to excitation
by the terrain. Empirically, this filtered acceleration
appears to vary linearly with velocity. �see Figure
19�. In other words, doubling the maximum speed of
the vehicle over a section of terrain will approxi-
mately double the maximum differential accelera-
tion imparted on the vehicle. In Sec. 9.1, this rela-
tionship will be used to derive a simple rule for
setting maximum velocity to approximately bound
the maximum shock imparted on the vehicle.

8. PATH PLANNING

As was previously noted, the RDDF file provided by
DARPA largely eliminates the need for any global
path planning. Thus, the role of Stanley’s path plan-
ner is primarily local obstacle avoidance. Instead of
planning in the global coordinate frame, Stanley’s
path planner was formulated in a unique coordinate
system: Perpendicular distance, or “lateral offset” to
a fixed base trajectory. Varying the lateral offset
moves Stanley left and right with respect to the base
trajectory, much like a car changes lanes on a high-
way. By intelligently changing the lateral offset, Stan-
ley can avoid obstacles at high speeds while making
fast progress along the course.

Figure 18. �a� Search regions for the road detection module: The occurrence of obstacles is determined along a sequence
of lines parallel to the RDDF; and �b� the result of the road estimator is shown in blue, behind the vehicle. Notice that the
road is bounded by two small berms.
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The base trajectory that defines lateral offset is
simply a smoothed version of the skeleton of the
RDDF corridor. It is important to note that this base
trajectory is not meant to be an optimal trajectory in
any sense; it serves as a baseline coordinate system
upon which obstacle avoidance maneuvers are con-
tinuously layered. The following two sections will
describe the two parts to Stanley’s path planning soft-
ware: The path smoother that generates the base tra-
jectory before the race, and the online path planner
which is constantly adjusting Stanley’s trajectory.

8.1. Path Smoothing

Any path can be used as a base trajectory for plan-
ning in lateral offset space. However, certain quali-
ties of base trajectories will improve overall perfor-
mance.

• Smoothness. The RDDF is a coarse descrip-
tion of the race corridor and contains many
sharp turns. Blindly trying to follow the
RDDF waypoints would result in both sig-
nificant overshoot and high lateral accelera-
tions, both of which could adversely affect

vehicle safety. Using a base trajectory that is
smoother than the original RDDF will allow
Stanley to travel faster in turns and follow the
intended course with higher accuracy.

• Matched curvature. While the RDDF corri-
dor is parallel to the road in expectation, the
curvature of the road is poorly predicted by
the RDDF file in turns, again due to the finite
number of waypoints. By default, Stanley
will prefer to drive parallel to the base trajec-
tory, so picking a trajectory that exhibits cur-
vature that better matches the curvature of
the underlying desert roads will result in
fewer changes in lateral offset. This will also
result in smoother, faster driving.

Stanley’s base trajectory is computed before the
race in a four-stage procedure.

1. First, points are added to the RDDF in pro-
portion to the local curvature �see Figure
20�a��.

2. The coordinates of all points in the up-
sampled trajectory are then adjusted through
least-squares optimization. Intuitively, this
optimization adjusts each waypoint, so as to
minimize the curvature of the path while
staying as close as possible to the waypoints
in the original RDDF. The resulting trajectory
is still piece-wise linear, but it is significantly
smoother than the original RDDF.
Let x1 , . . . ,xN be the waypoints of the base tra-
jectory to be optimized. For each of these
points, we are given a corresponding point
along the original RDDF, which shall be de-
noted yi. The points x1 , . . . ,xN are obtained by
minimizing the following additive function:

argmin
x1,. . .,xN

�
i

�yi − xi�2

− ��
n

�xn+1 − xn� · �xn − xn−1�
�xn+1 − xn��xn − xn−1�

+ �
n

fRDDF�xn� , �6�

where �yi−xi�2 is the quadratic distance be-
tween the waypoint xi and the corresponding
RDDF anchor point yi, and the index variable
i iterates over the set of points xi. Minimizing

Figure 19. The relationship between velocity and im-
parted acceleration from driving over a fixed-sized ob-
stacle at varying speeds. The plot shows two distinct reac-
tions to the obstacle; one up and one down. While this
relation is ultimately nonlinear, it is well modeled by a
linear function within the range relevant for desert
driving.
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this quadratic distance for all points i ensures
that the base trajectory stays close to the
original RDDF. The second expression in Eq.
�6� is a curvature term; It minimizes the angle
between two consecutive line segments in the
base trajectory by minimizing the dot prod-
uct of the segment vectors. Its function is to
smooth the trajectory: The smaller the angle,
the smoother the trajectory. The scalar �
trades off these two objectives, and is a pa-
rameter in Stanley’s software. The function
fRDDF�xn� is a differentiable barrier function
that goes to infinity as a point xn ap-
proaches the RDDF boundary, but is near
zero inside the corridor away from the
boundary. As a result, the smoothed trajec-
tory is always inside the valid RDDF cor-
ridor. The optimization is performed with a
fast version of conjugate gradient descent,
which moves RDDF points freely in 2D
space.

3. The next step of the path smoother involves
cubic spline interpolation. The purpose of
this step is to obtain a path that is differen-
tiable. This path can then be resampled
efficiently.

4. The final step of path smoothing pertains to
the calculation of the speed limit attached to
each waypoint of the smooth trajectory.
Speed limits are the minimum of three quan-
tities: �1� The speed limit from corresponding
segment of the original RDDF, �2� a speed
limit that arises from a bound on lateral ac-
celeration, and �3� a speed limit that arises

from a bounded deceleration constraint. The
lateral acceleration constraint forces the ve-
hicle to slow down appropriately in turns.
When computing these limits, we bound the
lateral acceleration of the vehicle to
0.75 m/s2, in order to give the vehicle
enough maneuverability to safely avoid ob-
stacles in curved segments of the course. The
bounded deceleration constraint forces the
vehicle to slow down in anticipation of turns
and changes in DARPA speed limits.

Figure 20 illustrates the effect of smoothing on a short
segment of the RDDF. Panel �a� shows the RDDF and
the upsampled base trajectory before smoothing.
Panels �b� and �c� show the trajectory after smoothing
�in red�, for different values of the parameter �. The
entire data preprocessing step is fully automated, and
requires only approximately 20 s of computation
time on a 1.4 GHz laptop, for the entire 2005 Race
Course. This base trajectory is transferred onto Stan-
ley, and the software is ready to go. No further infor-
mation about the environment or the race is provided
to the robot.

It is important to note that Stanley does not
modify the original RDDF file. The base trajectory is
only used as the coordinate system for obstacle
avoidance. When evaluating whether particular tra-
jectories stay within the designated race course,
Stanley checks against the original RDDF file. In this
way, the preprocessing step does not affect the inter-
pretation of the corridor constraint imposed by the
rules of the race.

Figure 20. Smoothing of the RDDF: �a� Adding additional points; �b� the trajectory after smoothing �shown in red�; �c� a
smoothed trajectory with a more aggressive smoothing parameter. The smoothing process takes only 20 seconds for the
entire 2005 course.
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8.2. Online Path Planning

Stanley’s online planning and control system is simi-
lar to the one described in Kelly & Stentz �1998�. The
online component of the path planner is responsible
for determining the actual trajectory of the vehicle
during the race. The goal of the planner is to com-
plete the course as fast as possible, while success-
fully avoiding obstacles and staying inside the
RDDF corridor. In the absence of obstacles, the plan-
ner will maintain a constant lateral offset from the
base trajectory. This results in driving a path parallel
to the base trajectory, but possibly shifted left or
right. If an obstacle is encountered, Stanley will plan
a smooth change in lateral offset that avoids the ob-
stacle and can be safely executed. Planning in lateral
offset space also has the advantage that it gracefully
handles GPS error. GPS error may systematically
shift Stanley’s position estimate. The path planner
will simply adjust the lateral offset of the current
trajectory to recenter the robot in the road.

The path planner is implemented as a search al-
gorithm that minimizes a linear combination of con-
tinuous cost functions, subject to a fixed vehicle
model. The vehicle model includes several kinematic
and dynamic constraints including maximum lateral
acceleration �to prevent fishtailing�, maximum steer-
ing angle �a joint limit�, maximum steering rate
�maximum speed of the steering motor�, and maxi-
mum deceleration. The cost functions penalize run-
ning over obstacles, leaving the RDDF corridor, and
the lateral offset from the current trajectory to the
sensed center of the road surface. The soft con-
straints induce a ranking of admissible trajectories.
Stanley chooses the best such trajectory. In calculat-
ing the total path costs, unknown territory is treated
the same as drivable surface, so that the vehicle does
not swerve around unmapped spots on the road, or
specular surfaces, such as puddles.

At every time step, the planner considers trajec-
tories drawn from a 2D space of maneuvers. The
first dimension describes the amount of lateral offset
to be added to the current trajectory. This parameter
allows Stanley to move left and right, while still
staying essentially parallel to the base trajectory. The
second dimension describes the rate at which Stan-
ley will attempt to change to this lateral offset. The
lookahead distance is speed dependent and ranges
from 15 to 25 m. All candidate paths are run
through the vehicle model to ensure that obey the
kinematic and dynamic vehicle constraints. Repeat-

edly layering these simple maneuvers on top of the
base trajectory can result in quite sophisticated
trajectories.

The second parameter in the path search allows
the planner to control the urgency of obstacle avoid-
ance. Discrete obstacles in the road, such as rocks or
fence posts, often require the fastest possible change
in lateral offset. Paths that change lateral offset as
fast as possible without violating the lateral accelera-
tion constraint are called swerves. Slow changes in
the positions of road boundaries require slow
smooth adjustment to the lateral offset. Trajectories
with the slowest possible change in lateral offset for
a given planning horizon are called nudges. Swerves
and nudges span a spectrum of maneuvers appro-
priate for high-speed obstacle avoidance: Fast
changes for avoiding head on obstacles, and slow
changes for smoothly tracking the road center.
Swerves and nudges are illustrated in Figure 21. On
a straight road, the resulting trajectories are similar
to those of Ko & Simmons’s �1998� lane curvature
method.

The path planner is executed at 10 Hz. The path
planner is ignorant to actual deviations from the ve-
hicle and the desired path, since those are handled
by the low-level steering controller. The resulting
trajectory is therefore always continuous. Fast
changes in lateral offset �swerves� will also include
braking in order to increase the amount of steering
the vehicle can do without violating the maximum
lateral acceleration constraint.

Figure 22 shows an example situation for the
path planner. Shown here is a situation taken from
Beer Bottle Pass, the most difficult passage of the
2005 Grand Challenge. This image only illustrates
one of the two search parameters: The lateral offset.
It illustrates the process through which trajectories
are generated by gradually changing the lateral off-
set relative to the base trajectory. By using the base
trajectory as a reference, path planning can take
place in a low-dimensional space, which we found
to be necessary for real-time performance.

9. REAL-TIME CONTROL

Once the intended path of the vehicle has been de-
termined by the path planner, the appropriate
throttle, brake, and steering commands necessary to
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achieve that path must be computed. This control
problem will be described in two parts: The velocity
controller and steering controller.

9.1. Velocity Control

Multiple software modules have input into Stanley’s
velocity, most notably the path planner, the health

monitor, the velocity recommender, and the low-
level velocity controller. The low-level velocity con-
troller translates velocity commands from the first
three modules into actual throttle and brake com-
mands. The implemented velocity is always the
minimum of the three recommended speeds. The
path planner will set a vehicle velocity based on the
base trajectory speed limits and any braking due to

Figure 21. Path planning in a 2D search space: �a� Paths that change lateral offsets with the minimum possible lateral
acceleration �for a fixed plan horizon�; and �b� the same for the maximum lateral acceleration. The former are called
“nudges,” and the latter are called “swerves.”

Figure 22. Snapshots of the path planner as it processes the drivability map. Both snapshots show a map, the vehicle,
and the various nudges considered by the planner. The first snapshot stems from a straight road �Mile 39.2 of the 2005
Race Course�. Stanley is traveling 31.4 mph; and hence, can only slowly change lateral offsets due to the lateral accelera-
tion constraint. The second example is taken from the most difficult part of the 2005 DARPA Grand Challenge, a moun-
tainous area called Beer Bottle Pass. Both images show only nudges for clarity.
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swerves. The vehicle health monitor will lower the
maximum velocity due to certain preprogrammed
conditions, such as GPS blackouts or critical system
failures.

The velocity recommender module sets an ap-
propriate maximum velocity based on estimated ter-
rain slope and roughness. The terrain slope affects
the maximum velocity if the pitch of the vehicle ex-
ceeds 5°. Beyond 5° of slope, the maximum velocity
of the vehicle is reduced linearly to values that, in
the extreme, restrict the vehicle’s velocity to 5 mph.
The terrain ruggedness is fed into a controller with
hysteresis that controls the velocity setpoint to ex-
ploit the linear relationship between filtered vertical
acceleration amplitude and velocity; see Sec. 7.2. If
rough terrain causes a vibration that exceeds the
maximum allowable threshold, the maximum veloc-
ity is reduced linearly such that continuing to en-
counter similar terrain would yield vibrations which
exactly meet the shock limit. Barring any further
shocks, the velocity limit is slowly increased linearly
with distance traveled.

This rule may appear odd, but it has great prac-
tical importance; it reduces the Stanley’s speed when
the vehicle hits a rut. Obviously, the speed reduction
occurs after the rut is hit, not before. By slowly re-
covering speed, Stanley will approach nearby ruts at
a much lower speed. As a result, Stanley tends to
drive slowly in areas with many ruts, and only re-
turns to the base trajectory speed when no ruts have
been encountered for a while. While this approach
does not avoid isolated ruts, we found it to be highly
effective in avoiding many shocks that would other-
wise harm the vehicle. Driving over wavy terrain
can be just as hard on the vehicle as driving on ruts.

In bumpy terrain, slowing down also changes the
frequency at which the bumps pass, reducing the
effect of resonance.

The velocity recommender is characterized by
two parameters: The maximum allowable shock,
and the linear recovery rate. Both are learned from
human driving. More specifically, by recording the
velocity profile of a human in rugged terrain, Stan-
ley identifies The parameters that most closely
match the human driving profile. Figure 23 shows
the velocity profile of a human driver in a mountain-
ous area of the 2004 Grand Challenge Course �the
“Daggett Ridge”�. It also shows the profile of Stan-
ley’s controller for the same data set. Both profiles
tend to slow down in the same areas. Stanley’s pro-
file, however, is different in two ways: The robot de-
celerates much faster than a person, and its recovery
is linear whereas the person’s recovery is nonlinear.
The fast acceleration is by design, to protect the ve-
hicle from further impact.

Once the planner, velocity recommender, and
health monitor have all submitted velocities, the
minimum of these speeds is implemented by the ve-
locity controller. The velocity controller treats the
brake cylinder pressure and throttle level as two op-
posing single-acting actuators that exert a longitudi-
nal force on the car. This is a very close approxima-
tion for the brake system, and was found to be an
acceptable simplification of the throttle system. The
controller computes a single error metric, equal to a
weighted sum of the velocity error and the integral
of the velocity error. The relative weighting deter-
mines the trade-off between disturbance rejection
and overshoot. When the error metric is positive, the
brake system commands a brake cylinder pressure

Figure 23. Velocity profile of a human driver and of Stanley’s velocity controller in rugged terrain. Stanley identifies
controller parameters that match human driving. This plot compares human driving with Stanley’s control output.
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proportional to the PI error metric; and when it is
negative, the throttle level is set proportional to the
negative of the PI error metric. By using the same PI
error metric for both actuators, the system is able to
avoid the chatter and dead bands associated with
opposing single-acting actuators. To realize the com-
manded brake pressure, the hysteretic brake actua-
tor is controlled through saturated proportional
feedback on the brake pressure, as measured by the
Touareg, and reported through the CAN bus
interface.

9.2. Steering Control

The steering controller accepts as input the trajectory
generated by the path planner, the UKF pose and
velocity estimate, and the measured steering wheel
angle. It outputs steering commands at a rate of
20 Hz. The function of this controller is to provide
closed-loop tracking of the desired vehicle path, as
determined by the path planner, on quickly varying
potentially rough terrain.

The key error metric is the cross-track error, x�t�,
as shown in Figure 24, which measures the lateral
distance of the center of the vehicle’s front wheels
from the nearest point on the trajectory. The idea
now is to command the steering by a control law
that yields an x�t� that converges to zero.

Stanley’s steering controller, at the core, is based
on a nonlinear feedback function of the cross-track
error, for which exponential convergence can be
shown. Denote the vehicle speed at time t by u�t�. In
the error-free case, using this term, Stanley’s front

wheels match the global orientation of the trajectory.
This is illustrated in Figure 24. The angle  in this
diagram describes the orientation of the nearest path
segment, measured relative to the vehicle’s own ori-
entation. In the absence of any lateral errors, the con-
trol law points the front wheels parallel to the plan-
ner trajectory.

The basic steering angle control law is given by

��t� = �t� + arctan
kx�t�
u�t�

, �7�

where k is a gain parameter. The second term adjusts
the steering in �nonlinear� proportion to the cross-
track error x�t�: The larger this error, the stronger the
steering response toward the trajectory.

Using a linear bicycle model with infinite tire
stiffness and tight steering limitations �see Gillespie,
1992� results in the following effect of the control
law:

ẋ�t� = − u�t�sin arctan� kx�t�
u�t� � =

− kx�t�

	1 + � kx�t�
u�t� �

2
,

�8�

and hence for small cross track error,

x�t� 
 x�0�exp − kt . �9�

Thus, the error converges exponentially to x�t�=0.
The parameter k determines the rate of convergence.
As cross-track error increases, the effect of the arctan
function is to turn the front wheels to point straight
toward the trajectory, yielding convergence limited
only by the speed of the vehicle. For any value of
x�t�, the differential equation converges monotoni-
cally to zero. Figure 25 shows phase portrait dia-
grams for Stanley’s final controller in simulation, as
a function of the error x�t� and the orientation �t�,
including the effect of steering input saturation.
These diagrams illustrate that the controller con-
verges nicely for the full range attitudes and a wide
range of cross-track errors, in the example of two
different velocities.

This basic approach works well for lower
speeds, and a variant of it can even be used for re-
verse driving. However, it neglects several impor-
tant effects. There is a discrete variable time delay in

Figure 24. Illustration of the steering controller. With
zero cross-track error, the basic implementation of the
steering controller steers the front wheels parallel to the
path. When cross-track error is perturbed from zero, it is
nulled by commanding the steering according to a nonlin-
ear feedback function.
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the control loop, inertia in the steering column, and
more energy to dissipate as speed increases. These
effects are handled by simply damping the differ-
ence between steering command and the measured
steering wheel angle, including a term for yaw
damping. Finally, to compensate for the slip of the
actual pneumatic tires, the vehicle is commanded to
have a steady-state yaw offset that is a nonlinear
function of the path curvature and the vehicle speed,
based on a bicycle vehicle model, with slip, that was
calibrated and verified in testing. These terms com-
bine to stabilize the vehicle and drive the cross-track
error to zero, when run on the physical vehicle. The
resulting controller has proven stable in testing on
terrain from pavement to deep off-road mud
puddles, and on trajectories with tight enough radii
of curvature to cause substantial slip. It typically
demonstrates tracking error that is on the order of
the estimation error of this system.

10. DEVELOPMENT PROCESS AND RACE
RESULTS

10.1. Race Preparation

The race preparation took place at three different lo-
cations: Stanford University, the 2004 Grand Chal-
lenge Course between Barstow and Primm, and the

Sonoran Desert near Phoenix, AZ. In the weeks lead-
ing up to the race, the team permanently moved to
Arizona, where it enjoyed the hospitality of Volk-
swagen of America’s Arizona Proving Grounds. Fig-
ure 26 shows examples of hardware testing in ex-
treme offroad terrain; these pictures were taken
while the vehicle was operated by a person.

In developing Stanley, the Stanford Racing Team
adhered to a tight development and testing sched-
ule, with clear milestones along the way. Emphasis
was placed on early integration, so that an end-to-
end prototype was available nearly a year before the
race. The system was tested periodically in desert
environments representative of the team’s expecta-
tion for the Grand Challenge race. In the months
leading up to the race, all software and hardware
modules were debugged and subsequently frozen.
The development of the system terminated well
ahead of the race.

The primary measure of system capability was
“MDBCF”—mean distance between catastrophic
failures. A catastrophic failure was defined as a con-
dition under which a human driver had to inter-
vene. Common failures involved software problems,
such as the one shown in Figure 9; occasional fail-
ures were caused by the hardware, e.g., the vehicle
power system. In December 2004, the MDBCF was
approximately 1 mile. It increased to 20 miles in July
2005. The last 418 miles before the National Qualifi-
cation Event were free of failures; this included a

Figure 25. Phase portrait for k=1 at 10 and 40 m per second, respectively, for the basic controller, including the effect of
steering input saturation.
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single 200-mile run over a cyclic testing course. At
that time, the system development was suspended,
Stanley’s lateral navigation accuracy was approxi-
mately 30 cm. The vehicle had logged more than
1,200 autonomous miles.

In preparing for this race, the team also tested
sensors that were not deployed in the final race.
Among them was an industrial strength stereo vi-
sion sensor with a 33 cm baseline. In early experi-
ments, we found that the stereo system provided ex-
cellent results in the short range, but lagged behind
the laser system in accuracy. The decision not to use
stereo was simply based on the observation that it
added little to the laser system. A larger baseline
might have made the stereo more useful at longer
ranges, but was unfortunately not available.

The second sensor that was not used in the race
was the 24 GHz RADAR system. The RADAR uses a
linear frequency shift keying modulated �LFMSK�
transmit wave form; it is normally used for adaptive
cruise control. After carefully tuning gains and ac-
ceptance thresholds of the sensor, the RADAR
proved highly effective in detecting large frontal ob-
stacles such as abandoned vehicles in desert terrain.
Similar to the monovision system in Sec. 6, the RA-
DAR was tasked to screen the road at a range be-
yond the laser sensors. If a potential obstacle was
detected, the system limits Stanley’s speed to
25 mph so that the lasers could detect the obstacle in
time for collision avoidance.

While the RADAR system proved highly effec-
tive in testing, two reasons prevented its use in the
race. The first reason was technical: During the
NQE, the USB driver of the receiving computer re-
peatedly caused trouble, sometimes stalling the re-
ceiving computer. The second reason was pragmati-
cal. During the NQE, it became apparent that the
probability of encountering large frontal obstacles
was small in high-speed zones; and even if those
existed, the vision system would very likely detect

them. As a consequence, the team felt that the tech-
nical risks associated with the RADAR system out-
weighed its benefits, and made the decision not to
use RADAR in the race.

Figure 26. Vehicle testing at the Volkswagen Arizona Proving Grounds, manual driving.

Figure 27. This map shows Stanley’s path. The thickness
of the trajectory indicates Stanley’s speed �thicker means
faster�. At the locations marked by the red “x”s, the race
organizers paused Stanley because of the close proximity
of CMU’s H1ghlander robot. At Mile 101.5, H1ghlander
was paused and Stanley passed. This location is marked
by a green “x”.
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10.2. National Qualification Event

The NQE took place from September 27 to October 5
on the California Speedway in Fontana, CA. Like
most competitive robots, Stanley qualified after four
test runs. From the 43 semifinalists, 11 completed the

course in the first run, 13 in the second run, 18 in the
third run, and 21 in the fourth run. Stanley’s times
were competitive, but not the fastest �Run 1—10:38;
Run 2—9:12; Run 3—11:06; and Run 4—11:06�. How-
ever, Stanley was the only vehicle that cleared all 50

Figure 28. Passing CMU’s H1ghlander robot: The left column shows a sequence of camera images, the center column the
processed images with obstacle information overlayed; and the right column, the 2D map derived from the processed
image. The vision routine detects H1ghlander as an obstacle at a 40 m range, approximately twice the range of the lasers.
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gates in every run, and avoided collisions with all of
the obstacles. This flawless performance earned
Stanley the number two starting position, behind
CMU’s H1ghlander robot and ahead of the slightly
faster Sandstorm robot, also by CMU.

10.3. The Race

At approximately 4:10 am on October 8, 2005, the
Stanford Racing Team received the race data, which
consisted of 2,935 GPS-referenced coordinates, along
with speed limits of up to 50 mph. Stanley started
the race at 6:35 am on October 8, 2005. The robot
immediately picked up speed and drove at or just
below the speed limit. 3 h, 45 min, and 22 s into the
race, at Mile 73.5, DARPA paused Stanley for the
first time, to give more space to CMU’s H1ghlander
robot, which had started five minutes ahead of Stan-
ley. The first pause lasted 2 min 45 s. Stanley was
paused again only 5 min 40 s later, at Mile 74.9 �3 h,
53 min, and 47 s into the race�. This time the pause
lasted 6 min 35 s, for a total pause time of 9 min
20 s. The locations of the pauses are shown in Figure
27. From this point on, Stanley repeatedly ap-
proached H1ghlander within a few hundred yards.
Even though Stanley was still behind H1ghlander, it
was leading the race.

5 h, 24 min, 45 s into the race, DARPA finally
paused H1ghlander and allowed Stanley to pass.
The passing happened a Mile 101.5; the location is
marked by a green circle in Figure 27. Figure 28
shows processed camera images of the passing pro-
cess acquired by Stanley, and Figure 29 depicts a 3D
model of H1ghlander as it is being passed. Since
Stanley started in second pole position and finished

first, the top-seeded H1ghlander robot was the only
robot encountered by Stanley during the race.

As noted in the Introduction of this paper, Stan-
ley finished first, at an unmatched finishing time of
6 h, 53 min, and 58 s. Its overall average velocity
was 19.1 mph. However, Stanley’s velocity varied
wildly during the race. Initially, the terrain was flat
and the speed limits allowed for much higher
speeds. Stanley reached its top speed of 38.0 mph at
Mile 5.43, 13 min and 47 s into the race. Its maxi-
mum average velocity during the race was 24.8 mph,
which Stanley attained after 16 min and 56 s, at Mile
7.00. Speed limits then forced Stanley to slow down.
Between Mile 84.9 and 88.1, DARPA restricted the
maximum velocity to 10 mph. Shortly thereafter, at
Mile 90.6 and 4 h, 57 min, and 7 s into the race, Stan-
ley attained its minimum average velocity of
18.3 mph. The total profile of velocities is shown in
Figure 30.

As explained in this paper, Stanley uses a num-
ber of strategies to determine the actual travel speed.
During 68.2% of the course, Stanley’s velocity was
limited as precalculated, by following the DARPA
speed limits or the maximum lateral acceleration
constraints in turns. For the remaining 31.8%, Stan-
ley chose to slow down dynamically, as the result of
its sensor measurements. In 18.1%, the slow down
was the result of rugged or steep terrain. The vision
module caused Stanley to slow down to 25 mph for
13.1% of the total distance; however, without the vi-
sion module Stanley would have been forced to a
25 mph maximum speed, which would have re-
sulted in a finishing time of approximately 7 h and
5 min, possibly behind CMU’s Sandstorm robot. Fi-
nally, for 0.6% of the course, Stanley drove slower
because it was denied GPS readings. Figure 31 illus-
trates the effect of terrain ruggedness on the overall
velocity. The curve on the top illustrates the magni-
tude at which Stanley slowed down to accommodate
rugged terrain; the bottom diagram shows the alti-
tude profile, as provided by DARPA. The terrain
ruggedness triggers mostly in mountainous terrain.
We believe that the ability to adapt the speed to the
ruggedness of the terrain was an essential ingredient
in Stanley’s success.

Stanley also encountered some unexpected diffi-
culties along the course. Early on in the race, Stan-
ley’s laser data stream repeatedly stalled for dura-
tions of 300 to 1,100 ms. There were a total of 17
incidents, nearly all of which occurred between Mile
22 and Mile 35. The resulting inaccurate time stamp-

Figure 29. Laser model of CMU’s H1ghlander robot,
taken at Mile 101.5.
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ing of the laser data led to the insertion of phantom
obstacles into the map. In four of those cases, those
incidents resulted in a significant swerve. The two
most significant of these swerves are shown in Fig-
ure 32. Both of those swerves were quite noticeable.
In one case, Stanley even drove briefly on the berm
as shown in Figure 32�a�; in the other, Stanley

swerved on an open lake bed without any obstacles,
as shown in Figure 32�b�. At no point was the ve-
hicle in jeopardy, as the berm that was traversed was
drivable. However, as a result of these errors, Stan-
ley slowed down a number of times between Miles
22 and 35. Thus, the main effect of these incidents
was a loss of time early in the race. The data stream

Figure 30. Stanley’s cumulative velocity.
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stalling problem vanished entirely after Mile 37.85. It
only reoccurred once at Mile 120.66, without any vis-
ible change of the driving behavior.

During 4.7% of the Grand Challenge, the GPS
reported 60 cm error or more. Naturally, this num-
ber represents the unit’s own estimate, which may
not necessarily be accurate. However, this raises the
question of how important online mapping and path
planning was in this race.

Stanley frequently moved away from the center
axis of the RDDF. On average, the lateral offset was
±74 cm. The maximum lateral offset during the race
was 10.7 m, which was the result of the swerve
shown in Figure 32�c�. However, such incidents were
rare, and in nearly all cases nonzero lateral offsets
were the results of obstacles in the robot’s path.

An example situation is depicted in Figure 33.
This figure shows raw laser data from the Beer
Bottle Pass, the most difficult section of the course.
An image of this pass is depicted in Figure 34�a�. Of

interest is the map in Figure 34�b�. Here the DARPA-
provided corridor is marked by the two solid blue
lines. This image illustrates that the berm on Stan-
ley’s left reaches well into the corridor. Stanley
drives as far left as the corridor constraint allows.
Figure 35 shows a histogram of lateral offsets for the
Beer Bottle Pass. On average, Stanley drove 66 cm to
the right of the center of the RDDF in this part of the

Figure 31. This diagram shows where the road condi-
tions forced Stanley to slow down along the race course.
Slow down predominately occurred in the mountains.

Figure 32. Problems during the race caused by a stalling of the laser data stream. In both cases, Stanley swerved around
phantom obstacles; at Mile 22.37 Stanley drove on the berm. None of these incidents led to a collision or an unsafe driving
situation during the race.

Figure 33. Sensor image from the Beer Bottle Pass, the
most difficult passage of the DARPA Grand Challenge.
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race. We suspect that driving 66 cm further to the
left would have been fatal in many places. This
sheds light on the importance of Stanley’s ability to
react to the environment in driving. Simply follow-
ing the GPS points would likely have prevented
Stanley from finishing this race.

11. DISCUSSION

This paper provides a comprehensive survey of the
winning robot of the DARPA Grand Challenge. Stan-
ley, developed by the Stanford Racing Team in col-
laboration with its primary supporters, relied on a
software pipeline for processing sensor data and de-
termining suitable steering, throttle, brake, and gear
shifting commands.

From a broad perspective, Stanley’s software mir-
rors common methodology in autonomous vehicle
control. However, many of the individual modules
relied on state-of-the-art artificial intelligence tech-
niques. The pervasive use of machine learning, both
ahead and during the race, made Stanley robust and

precise. We believe that those techniques, along with
the extensive testing that took place, contributed sig-
nificantly to Stanley’s success in this race.

While the DARPA Grand Challenge was a mile-
stone in the quest for self-driving cars, it left open a
number of important problems. Most important
among those was the fact that the race environment
was static. Stanley is unable to navigate in traffic. For
autonomous cars to succeed, robots, such as Stanley,
must be able to perceive and interact with moving
traffic. While a number of systems have shown im-
pressive results �Dickmanns et al., 1994; Hebert,
Thorpe & Stentz, 1997; Pomerleau & Jochem, 1996�,
further research is needed to achieve the level of re-
liability necessary for this demanding task. Even
within the domain of driving in static environments,
Stanley’s software can only handle limited types of
obstacles. For example, the present software would
be unable to distinguish tall grass from rocks, a re-
search topic that has become highly popular in recent
years �Dima & Hebert, 2005; Happold, Ollis &
Johnson, 2006; Wellington, Courville & Stentz, 2005�.
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